Multiple Modulation of Acid-Sensing Ion Channel 1a by the Alkaloid Daurisoline
نویسندگان
چکیده
منابع مشابه
Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملModulation of acid-sensing ion channel activity by nitric oxide.
Acid-sensing ion channels (ASICs) are a class of ion channels activated by extracellular protons and are believed to mediate the pain caused by tissue acidosis. Although ASICs have been widely studied, little is known about their regulation by inflammatory mediators. Here, we provide evidence that nitric oxide (NO) potentiates the activity of ASICs. Whole-cell patch-clamp recordings were perfor...
متن کاملPt718. Histamine Selectively Potentiates Acid-sensing Ion Channel 1a
Although acid-sensitive ion channels (ASICs) play an important role in brain functions, the exact mechanism of their physiological activation remain unclear. A possible answer to the intriguing question is that some presently unknown endogenous ligand(s) positively modulate ASICs and enhance their responses to physiologically significant level. In the present work we found that histamine select...
متن کاملAcid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms.
The exact roles of acid-sensing ion channels (ASICs) in synaptic plasticity remain elusive. Here, we address the contribution of ASIC1a to five forms of synaptic plasticity in the mouse hippocampus using an in vitro multi-electrode array recording system. We found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term...
متن کاملacid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
objective(s): activation of acid-sensing ion channel 1a (asic1a) is responsible for tissue injury caused by acidosis in nervous systems. but its physiological and pathological roles in nucleus pulposus cells (npcs) are unclear. the aim of this study is to investigate whether asic1a regulates the survival of npcs in the acidic environment of degenerated discs. materials and methods: npcs were is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomolecules
سال: 2019
ISSN: 2218-273X
DOI: 10.3390/biom9080336